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Distinguishing between self limited delayed puberty (SLDP) and congenital

hypogonadotropic hypogonadism (CHH) may be tricky as they share clinical

and biochemical characteristics. and appear to lie within the same clinical

spectrum. However, one is classically transient (SDLP) while the second is

typically a lifetime condition (CHH). The natural history and long-term

outcomes of these two conditions differ significantly and thus command

distinctive approaches and management. Because the first presentation of

SDLP and CHH is very similar (delayed puberty with low LH and FSH and low sex

hormones), the scientific community is scrambling to identify diagnostic tests

that can allow a correct differential diagnosis among these two conditions,

without having to rely on the presence or absence of phenotypic red flags for

CHH that clinicians anyway seem to find hard to process. Despite the

heterogeneity of genetic defects so far reported in DP, genetic analysis

through next-generation sequencing technology (NGS) had the potential to

contribute to the differential diagnostic process between SLDP and CHH. In this

review we will provide an up-to-date overview of the genetic architecture of

these two conditions and debate the benefits and the bias of performing

genetic analysis seeking to effectively differentiate between these

two conditions.
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Introduction

Definition and etiology

Delayed puberty (DP) is one of the most common clinical

conditions evaluated by the pediatric endocrinologist, affecting

over 2% of adolescents, and implies the lack of the first signs of

pubertal development beyond the average expected age for the

normal population or, when puberty has previously begun, the

failure of appropriate progression. Due to the earlier onset of

pubertal development in girls, puberty is generally defined to be

delayed if there is absence offirst pubertal signs at 13 years of age

in females (breast budding or thelarche) and or 14 in males

(testicular enlargement over 3-4 mL of volume), respectively.

These limits of normality correspond to the mean age +2-2.5 SD

of the healthy general population in Western Europe. This

implies that 2.5-3% of the normal subjects will fall in the

extreme tail of the normal gaussian curve, and will be

classified as having DP although, as better explained below,

they will likely fall in the self-limited (“benign”) form of this

condition. Several underlying etiologies cause pubertal delay

(Table 1), including chronic disease, energy-deficit and hypo-

and (in girls) hyper- gonadotropic hypogonadism (1). To date,

self-limited, or constitutional, DP (SLDP) is the highly common

cause of pubertal delay in early adolescence, involving around 2/

3 of male and 1/3 of female with DP; a para-physiological

condition where individuals start puberty late, but eventually

progressing to achieve full sexual maturation. By contrast,

hypogonadism becomes the more common cause of DP by the

late teenage years. Hypergonadotropic hypogonadism is due to
Frontiers in Endocrinology 02
intrinsic or primary gonadal failure and can easily be discerned

from other forms of DP through unstimulated reproductive

hormone levels, indicated by low sex steroids and high

gonadotropins. It particularly concerns females (21% of DP

cases), with Turner syndrome seen in 27% of girls with

premature ovarian insufficiency (POI) (2, 3) but is a very

uncommon cause of pubertal failure in males (vanishing testes

syndrome). Conversely differential diagnosis between SLDP and

hypogonadotropic hypogonadism (HH) is often challenging, as

both conditions can exhibit overlapping clinical and hormonal

features (2), albeit that more careful clinical ascertainment of

CHH red flags could potentially identify around 50% of the

CHH cases with a high degree of probability (4).
Clinical features

Adolescents with CHH and SLDP present similar clinical

traits and hormonal status at presentation but respond very

differently to “expectative management” in terms of physical

development and long-term psychosexual outcomes (5, 6). DP in

females is established when breast budding development is

absent by the age of 13 years, while in males when the

testicular volume fails to surpass the threshold of 4 mL

volume (evaluated by Prader orchidometer) by the age of 14

years (7). Family history of CHH versus SLDP can be helpful,

but both conditions may occur within the same family (8, 9).

Regarding phenotypic red flags for CHH, these comprise

reproductive and non-reproductive defects, with the former

only observed in males. A history of cryptorchidism,
TABLE 1 List of conditions associated with CHH or SLDP.

PARA-PHYSIOLOGICAL
CONDITION DISEASE CONDITION

CLASSIFICATION SLDP
HYPOGONADOTROPIC HYPOGONADISM

ORGANIC FUNCTIONAL

COMMON CAUSES

Common familial component (associated
genes: IGSF10, H6ST1, EAP1, LGR4, FTO)

- CHH (Kallmann or CHH, up to 60 genes
with variable inheritance and
expressivity

- CHARGE

- MPHD

- Acquired lesions (e.g., infiltrative lesions,
tumors)

- Metabolic diseases (e.g., iron overload)

- Autommune diseases (e.g., hypophisitis)

- Other genetic syndromes (e.g., Prader-
Willi)

- Iatrogenic causes (e.g., surgery,
radiotherapy)

- Chronic illness

- Energy deficit (malnutrition,
malabsorption, eating disorder,
excessive exercise)

- Stress

- Drugs (opiates, cannabinoids, dopamine-
antagonists and, in males,
glucocorticoids)

- Other endocrine diseases (e.g., hyper-PRL
or male Cushing’s)

n.b. Hypothalamic amenorrhoea comprosed both energy deficit and genetic elements
(Delaney A et al, J Clin Endocrinol Metab. 2021 Mar 8;106(3):e1441-e1452.)

FREQUENCY 1:50 1:5000-20,000
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particularly the bilateral form, together with a possible neonatal

underdeveloped penis (2.5 SD below average size for healthy

subjects) and/or hypospadias in males is strongly suggests pre-

and post-natal gonadotropin deficiency characteristic of CHH

(absent minipuberty). Indeed, a definitive diagnosis can be made

through basal biochemical evaluation of the HPG axis during the

postnatal weeks corresponding to normal minipuberty (10, 11).

However, there are no external signs postnatally in CHH female

CHHs to suggest a congenital GnRH secretion defect. However,

non-reproductive CHH red flags occur in both sexes, comprising

clefting of the palate and/or lips, olfactory defects, alteration of

digital bones, hearing loss, colorblindness, nystagmus and

bimanual synkinesis, renal and/or dental agenesis or

dysgenesis (10, 11). Anosmia or hyposmia are reported in

around 50% of patients with CHH, thus olfactory defects

(evaluated with T2-weighted coronal MRI of the olfactory

bulbs and sulci and/or a quantitative olfactory test) should be

evaluated and, whenever present, considered as a reliable clue

towards CHH diagnosis (12). Slow growth rate and low weight

tend to suggest functional HH or SLDP (7), especially when

syndromic manifestations or red flags are absent. In contrast,

children with CHH exhibit regular linear growth, although

delayed bone maturation, osteopenia, and osteoporosis may be

observed when CHH is diagnosed later in life (13, 14).
Hormone and stimulation test for
differential diagnosis

Unlike the postnatal period, gonadotropin and sex hormone

measurements cannot discriminate between SLDP and CHH in

early adolescence, because gonadotropin concentrations are

frequently borderline also in healthy subjects of this age (1).

Frequent overnight blood sampling and LH pulse-analysis has

been considered for the differential diagnosis, although similar

pulsatile “fluctuation” was observed in patients with SLDP, CHH

and in normal prepubertal children (15). Moreover, this

technique can’t realistically be into routine clinical practice. In

addition, the diagnostic efficacy of a single basal gonadotropin

concentration it is inadequate (16, 17). A similarly low

diagnostic power is offered by dynamic gonadotropin testing

with GnRH or GnRH analogs (18). In fact, the lack of a

gonadotropin reaction to GnRH stimulation can only confirm

the absence of puberty onset, but it is not sufficient to provide a

true differential diagnosis between SLDP and CHH (19).

Measurement of Inhibin B, Anti-Mullerin Hormone, AMH,

INSL3, and testosterone after hCG stimulation have been

proposed to guide differential diagnosis (20). Although the

data are promising (18, 21), they are not sufficient to support

the clinical value of these newer endocrine markers. The use of

new ultrasensitive methods (LC/MS) for determining hormone

levels might, however, unravel new diagnostic perspectives. The

testosterone response to long-term hCG stimulation and peak
Frontiers in Endocrinology 03
serum FSH response to GnRH were found to be significantly

different in CHH patients (22), but there are potential long-term

drawbacks to long-term hCG therapy in males who are FSH-

naïve, in terms of promoting differentiation of a limited pool of

Sertoli and germ cells before they have a chance to proliferate

under FSH stimulation. Moreover, these methods are too

inconvenient and expensive to be useful first-line approaches.

Nevertheless, hormonal responsiveness to kisspeptin in boys

with delayed puberty appears to be a promising new hormonal

marker, although currently further studies are needed (23).
Low dose sex steroid “priming” test

Recent studies have examined the diagnostic value of

testosterone priming to differentiate between SLDP from

CHH. Short-term testosterone therapy (oral, injections or

transdermal) in boys with SLDP would prompt HPG

activation, with the result of enlargement of the testis and rise

in the production of endogenous testosterone (24). This

proposed “diagnostic test” would speed up diagnosis and

consequent treatment of SLDP patients, with benefits on

growth velocity and virilization (25). Subjects not responding

to testosterone priming (i.e., CHH patients) (24) could be than

efficiently analyzed with the more expensive tests described

above or offered more sustained testosterone treatment.

Estradiol priming has also been proposed for HPG activation

in SLDP females (2). Although, as discussed in previous

paragraphs, clinicians could benefit of multiple clinical and

biochemical tests to produce the diagnosis, none of these

could accurately discriminate between those patients who will

naturally pass and progress normally during puberty (i.e. SLDP)

and those who will likely require lifelong medical therapy (i.e.

HH) (2, 3). The clinical distinction between SLDP and CHH in

early adolescence is of crucial importance as if CHH is

diagnosed, prompt drug treatment is mandatory for puberty

induction (26–28), with combined gonadotropin therapy having

the potential to optimize fertility potential and quality of life in

males (29).
Genetics of CHH

CHH is defined by the diagnosis of gonadotropic deficiency

throughout the infant mini- puberty or when puberty is absent

or arrested in adolescence (30), although the median age at

diagnosis and effective treatment of CHH remains unacceptably

high around 19 years (5) and many patients present much later

in adult life with sexual dysfunction, infertility, anaemia,

myopathy or osteoporosis (31). CHH accounts for 24 to 85%

of stable hypogonadotropic hypogonadism and includes

normosmic subjects (nCHH) and subjects with olfactory

defects identifying the Kallmann Syndrome (KS). KS results
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from mutations in genes acting in the development of olfactory

neurons; nCHH can also be underpinned by the same

“neurodevelopmental” genes but is more commonly associated

with mutations of genes that regulate GnRH secretion.

Currently, the utility of this dichotomous division in targeting

genetic testing is reduced by the clinical and genetic overlap

between the two conditions (32). In CHH, a genetic basis can be

identified in around 50% of patients (14, 33, 34), although as

more genes are identified it has become apparent in many

patients that the genetic variant originally believed to fully

explain their condition did not in fact represent the whole

story. So far, mutations in more than 60 genes have been

classified as genetic cause of CHH, whether nCHH, KS, or

both (Table 2), with few rare loci also involved in complex
Frontiers in Endocrinology 04
syndromes such as CHARGE (35–38).These genes include

ANOS1, FGF receptor 1 (FGFR1), FGF8, prokineticin 2

(PROK2), prokineticin 2 receptor (PROKR2), CHD7, NMDA

receptor synaptonuclear signaling and neuronal migration factor

(NSMF), GnRH1, GnRH receptor (GnRHR), KISS1, KISS1R,

tacykinin 3 (TAC3), TACR3, semaphorin 3A (SEMA3A), SRY-

box 10 (SOX10), IL-17 receptor D (IL17RD), FEZ family zinc

finger 1 (FEZF1), WD repeat domain 11 (WDR11), heparin

sulfate 6-O-sulfotransferase 1 (HS6ST1), and FGF17. These are

key genes for regulating GnRH neuronal migration and

differentiation, GnRH secretion, or its upstream or

downstream pathways (Figure 1). GnRH neuroendocrine cells

originate in the olfactory placode outside the central nervous

system and subsequently migrate into the brain during
TABLE 2 List of genes implicated in CHH.

Gene symbol OMIM Inherit-ance Olfactory defect Main phisiological mechanism Functionally validated variants

LEP 164160 AR nCHH Mimics energy-deficit HH in the face or
early-onset morbid obesity

X

LEPR 601007 AR nCHH X

GnRH1 152760 AR, olig nCHH GnRH function X

GnRHR 138850 AR, olig nCHH X

KISS1 603286 AR nCHH GnRH neuron activatio X

KISS1R 604161 AR nCHH X

TAC3 162330 AR nCHH X

TACR3 162332 AR, olig nCHH X

ANOS1 300836 XLR KS GnRH migration X

HS6ST1 604846 Olig KS or CHH X

PROK2 607002 AR,AD,olig KS or nCHH X

PROKR2 607123 AR,AD,olig KS or nCHH X

SEMA3A 603961 AD,olig KS or nCHH X

PLXNA1 601055 AR, olig KS or nCHH

SEMA7A 607961 olig KS or nCHH

SEMA3E 608166 olig KS or nCHH X

NSMF 608137 AR,olig KS or nCHH X

CCDC141 616031 AR, olig nCHH

FEZF1 613301 AR KS X

DCC 120470 AD, olig KS or nCHH X

ntn1 601614 AD, olig KS or nCHH X

AMH 600957 AD KS or nCHH X

AMHR2 600956 AD KS or nCHH X

NDNF 616506 AD KS X

SOX10 602229 AD KS X

(Continued)
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embryonic development (39). This route offers a developmental

connection between the sense of smell and the central control of

reproduction, which are both affected in Kallmann syndrome.

Evidence obtained in the past years (40) suggest that GnRH

neurons originating from the neural crest and ectodermal

progenitors migrate in tight association with growing axons of

olfactory and terminal nerves. Reached the hypothalamus,

GnRH neurons finally detach from their TN guiding

fibers, disperse further into the brain parenchyma, and stop

the migration. At birth, GnRH neurons project to the

hypothalamic median eminence and release GnRH into the

hypophyseal portal vasculature (41). GnRH acts via the GnRH

receptor, which is expressed on gonadotropic cells in the anterior

pituitary gland. This action elicits the secretion of the

gonadotropins, luteinizing hormone and follicle-stimulating

hormone which control gonadal maturation and adult

reproductive physiology via the hypothalamic–pituitary–

gonadal (HPG) axis. As with many other diseases of genetic

origin, the application of next generation sequencing technology

(NGS) to the diagnosis of CHH has boosted the discovery of new

candidates involved in its etiology. All known forms of

inheritance have been described: autosomal dominant,

recessive and with variable penetrance; X-linked recessive;

oligogenicity, and transmission linked to an imprinting locus.

Moreover, as already reported for Fgf8 signaling system (42, 43),

also interferences in the pre-hypothalamic epigenome (throught

DNMTs/TETs proteins) could have major consequences on

GnRH system neurodevelopment, resulting in CHH disorder.
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Due to the variable expressivity and incomplete penetrance of

the genetic defects, together with the actual or potential impact

of oligogenicity and epigenome modifications, there is a broad

spectrum of phenotypes, whether with non-reproductive defects

or pure neuroendocrine phenotype, and ranging from complete

CHH, with LH/GnRH apulsatility and absent pubertal

development (around 2/3 of cases), to partial hypogonadism

with residual LH/GnRH pulsatility (low amplitude, low

frequency, or nocturnal-only pattern) resulting in arrested

early puberty (around 1/3 of cases), and even reversible CHH

in 5 to 20% of cases patients (44). Crucially, the genetic

architecture of CHH as is presently understood does not

explain the 3-5-fold excess of affected males.
Autosomal recessive forms

Isolated CHH is transmitted as an autosomal recessive trait

due to mutations in three genes: GnRHR, for which over 60

families have been reported (45–49), KISS1R, with 27 identified

families (45, 50) and TACR3, found in 20 families (45, 51–54). In

these patients, the phenotype is a common nCHH, without any

non-reproductive traits of disease (36). It is worth to report that

for GnRHR mutations, responsible for about 40-50% of

hereditary cases of nCHH (48), there is a broad phenotypic

variability even in the same pedigree with the same mutation

(55). On the other hand, biallelic mutations in GNRH1, KISS1,

and TAC3, ligands of the above-mentioned receptors, are a rare
TABLE 2 Continued

Gene symbol OMIM Inherit-ance Olfactory defect Main phisiological mechanism Functionally validated variants

TUBB3 602661 AD KS X

GLCE 612134 – KS or nCHH

FGFR1 136350 AD KS or nCHH GnRH neuron fate specification X

IL17RD 606807 Olig KS or nCHH X

FGF17 603725 Olig KS or nCHH X

FGF8 600483 Olig KS or nCHH X

DUSp6 602748 Olig KS or nCHH

FLRT3 604808 Olig KS or nCHH

sPRY4 607984 Olig KS or nCHH

KLB 611135 AD KS or nCHH X

WDR11 606417 AD, olig KS or nCHH X

IGSF10 617351 AD nCHH X

NR0B1 300473 XLR nCHH X

CHD7 608892 AD, AR, olig KS or nCHH X

SOX2 184429 AR nCHH X

CHH, congenital hypogonadotropic hypogonadism; KS, Kallmann syndrome; AD, autosomal dominant; AR, autosomal recessive; olig: oligogenic. X, yes.
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cause of nCHH (36). Mutations inGNRHR represent a paradigm

of impaired functionality of GnRH, in fact, GnRHR encodes a

receptor coupled to G proteins which determines the release of

gonadotropins in the pituitary (41). KISS1R, TACR3 and TAC3

genes, encoding for a G-protein-coupled receptor for Kisspeptin,

for neurokinin B and its ligand, are all instead members of a

complex network where the KDNY neurons exert regulatory

action on GnRH function (37).
X-linked forms

ANOS1 (OMIM 300836), formerly KAL1, is characterized by

an X-linked recessive inheritance pattern; intragenic

microdeletions or pathological variations of this gene have

been described in 10-20% of KS (33). For canonical clinical

manifestations, such as CHH and anosmia, penetrance is

complete (56–61). On the contrary, other cl inical

manifestations such as synkinesis (56) and renal agenesis show

different expressions in individuals also carrying the same

variant (57–68). About 144 families have been reported so far.

It is worth mentioning a female phenotype observed in 10
Frontiers in Endocrinology 06
patients, of which one case was linked to a biallelic variant of

ANOS1 (69) and the other nine cases were traced to a mutation

in another gene, indicationg a possible oligogenic inheritance.

ANOS1 encodes Anosmin1, an extracellular protein that

mediates cell adhesion and play a crucial role in the migration

of GnRH neurons (41).
Autosomal dominant forms

Autosomal dominant (AD) transmission of CHH is seen

more often in KS than in nCHH, with the most common genes

(causing both nCHH and KS) being FGFR1 and CHD7. FGFR-1

encodes a tyrosine kinase receptor that regulates central

developmental processes such as neuronal migration, fate,

determination, and cell proliferation (41). FGFR1 plays a

fundamental action in the proliferation and migration of

GnRH neurons to the hypothalamus as well as directly

promoting olfactory bulb development. Up to now, more than

140 mutations in this gene have been described, which generally

lead to a loss of function with various mechanisms (splicing,

nonsense, missense, frameshift and deletions) (56, 70, 71).
FIGURE 1

Genes reported in CHH and SLDP are related to GnRH development and GnRH function. The drawing on the left panel shows the migration of
the GnRH neurons from the olfactory placode and into the hypothalamus which occurs within the first 10 to 12 weeks of rodent life. In the right
panel, a concise view of our current understanding of the KISS1 neuronal networks governing GnRH secretion is depicted. Genes associated
with CHH are depicted in red, shared genes between CHH and SLDP are depicted in green whereas genes related to SLDP are marked in
orange. GnRH, gonadotropin-releasing hormone; KNDy, Kiss1/NKB/Dyn neuron; ARC, arcuate nucleus; AVPV, anteroventral periventricular
nucleus; EM, median eminence.
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FGFR1 mutations related to KS are exemplified by incomplete

penetrance (30, 72, 73) and variable clinical expression even in

the same family, with patients presenting anosmia, complete

phenotype, or isolated pubertal delay (72–75). Additionally, it

was reported that mutations in this gene cause also nCHH (73,

76–78). Other clinical traits of FGFR1mutations, such as cleft lip

and cleft palate, skeletal anomalies, and dental agenesis, are

reported with variable frequency (30, 56, 66, 72, 79). With the

discovery of other gene mutations in patients previously

considered to have pure AD CHH due to FGFR1 mutations, it

has become increasingly apparent that variable penetrance or

oligogenicity are more common than AD inheritance with

FGFR1 mutations. CHD7, located in 8q12.1, encodes

chromodomain helicase DNA-binding protein 7, which is

expressed in different fetal tissues including the developing

brain. It is one of two CHH genetic loci shared with CHARGE

syndrome, a rare disorder with autosomal dominant

inheritances, characterized by congenital heart disease,

coloboma, choanal atresia, genital and ear anomalies, and

growth and developmental retardation. Its pattern of

expression reflects a potential CHD7 contribution in the

development of the olfactory bulb and GnRH neurons (41).

Whereas CHARGE patients tend to harbor large de novo gene

deletions, patients with KS and nCHH (80–82) tend to harbor

missense mutations with partial loss of function that may either

be de novo or inherited (83). Even in the case of CHD7mutations

there is broad phenotypic variability, going from KS through

nCHH to isolated anosmia (82, 83). Other clinical traits

associated with CHD7 mutations are deafness, anomalies of

the outer ear and lip/cleft palate (83, 84). Indeed, it can

sometimes be hard to distinguish between “mild CHARGE”

and KS with multiple developmental defects. SOX10 is a

transcription factor crucial for the early development of neural

crest cells, which are multipotent precursor arising from the

neural tube that differentiate into different cell types. SOX10

influence also hearing through its expression in the melanocytic

intermediate cells of the cochlear stria vascularis during early

development of the inner ear (85). AD SOX10 mutations have

been described in nearly 40% of KS patients with deafness (86).

PROKR2, a gene encoding a G protein-coupled receptor and its

ligand PROK2 deserve to be reported in this section as a

paradigm of mixed inheritance. The binding of Prok2 to its

receptor activates a signaling cascade with effects on the

migration of GnRH neurons (41). Mutation in PROKR2 were

reported both in KS and nCHH. In 20% of cases AR inheritance

pattern is reported for this gene, whereas the remaining cases are

due to AD or oligogenic mechanisms (79, 87–94). PROK2

variants, usually less frequent, can present with AD or AR

inheritance patterns. As with FGFR1, some cases of PROK2

and PROKR2 mutations that were originally believed to

represent AD inheritance have since turned out to be more

probably oligogenic. FGF8 encodes for a ligand of FGF1 receptor

(36). Heterozygous mutations of FGF8 were identified both in
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KS and nCHH, also with oligogenic inheritance. The clinical

signs include neurosensorial deafness camptodactyly and cleft

lip/palate (3, 70, 95).
Oligogenic inheritance

Recently in several cases of nCHH and KS a mutation in two

or more genes, with oligogenic inheritance, has been reported. In

2006 a case of KS harboring mutations of both PROKR2 and

KAL1 was reported (79). However, the authors did not fully

appreciate the significance of their finding and, consequently, it

was not until the following year that a convincing report of two

different genetic variants in FGFR1 and NSMF inherited within

kindred causing KS only in the single individual carrying both

(96). Subsequently, in 2010, Sykiotis (97) described oligogenic

inheritance in 2.5% of subjects in a large series of CHH patients

using a panel of just 8 genes. Successively an oligogenic

mechanism in 7% (78) to 15% (32) of the subjects with CHH

was documented by different groups. So far, an oligogenic

mechanism of inheritance was documented at least for 16

genes (30). Reasonably, the application of NGS will increase

the possibility of finding “oligogenicity” in CHH. However, the

huge amount of data generated by NGS is now challenging the

clear distinction between “oligogenicity” and the presence of

benign variants that do not interfere with the phenotype that is

determined by the variant that is principally responsible (36).
CNV contribution to the genetic
architecture of CHH

Even if more than 60 candidates have been linked with the

pathogenesis of CHH, approximately 50% of cases remain

genetically undetermined (37). Part of this missing genetic

heritability probably resides in new candidates that require

larger cohorts for their discovery or in mutations not simply

detectable by whole exome sequencing experiments (WES), such

as copy number variants (CNVs) and variants in the non-coding

portion of the genome. CNVs are structural variants that result

in either gain (duplications) or loss (deletions) of genetic

material (more than 50 bp of genomic DNA). Thus far,

previous investigation of CNVs with chromosomal

microarrays or karyotypes in CHH has led to essential genetic

findings (98–100), showing an overall prevalence of ~1% in a

subset of CHH-associated genes (101, 102). However, such a low

prevalence of CNVs in previous CHH studies has been imputed

to the low-resolution tools deployed to call CNVs (101). To date,

complex analytic pipelines now available can detect CNVs of a

smaller size compared to historic microarrays, allowing precise

characterization of these structural variants. In 2022,

Balasubramanian and colleagues employed new validated,

high-resolution CNV capture technology to examine a large
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cohort of CHH patients, detecting a total CNV prevalence of 2%

across 13/62 known CHH candidates (103). Although

supporting the idea that CNVs in known CHH genes should

be investigated in patients with CHH, this study indicates that

the greater proportion of the missing heritability in CHH may

relate to mutations of new coding/non-coding genes. It is hoped

that, given the massive application of genome sequencing, these

still elusive variants involving non-coding regions will illuminate

the full genetic architecture of CHH.
Genetics of SLDP

Pondering the distribution of puberty timing in the normal

population, SLDP can be assimilated to the extreme upper limit

of normality. A clear diagnosis of this condition is often difficult

to achieve, even if SLDP is frequently reported in multiple

generations of the same family. Most commonly, the trait is

inherited in an autosomal dominant pattern, often with

complete penetrance, but autosomal recessive, X-linked and

bilinear pedigrees have also been reported (104, 105).

Epidemiological studies of twins in both sexes have shown that

the time of puberty is a highly heritable trait and that genetics

play a key role in determining when healthy individuals enter

puberty (106, 107). It is clear from genome wide association

studies (GWAS) that many different genetic signals are crucial in

the discrepancy of pubertal timing observed in the normal

population (108). In contrast, one or a small number of

genetic variations in each family are generally described in

delayed familial puberty, with a corresponding pattern of

autosomal dominant inheritance. The recent application of

NGS technology to self-limited DP have unraveled fascinating

new mechanisms in the genetic control of puberty (Figure 1).
HS6ST1

Targeted and whole exome sequencing methods

identified a mutation in HS6ST1 in a broad pedigree among

a large cohort of patients with isolated familial delayed

puberty, without associated CHH in their relatives (84). All

the family members who carried the mutation exhibited a

canonical SLDP phenotype, rather than CHH; the proband

entering puberty spontaneously at 14.3 years. In parallel, a

mouse heterozygous knockout model found the loss of an

Hs6st1 allele to cause pubertal delay in females without

impairment of adult reproductive capacity. Hs6st1 +/−

mice showed no impairment of fertility, development of

GnRH neurons, testes, or spermatogenesis. However, a

substantial delay in the timing of vaginal opening (used to

determine the onset of puberty in female rodents) was

observed in females. Remarkably, the Hs6st1 +/- mice had

normal olfactory bulbs without any reduction in the global
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number of GnRH neurons in the hypothalamus or projecting

to the median eminence. Consequently, the pubertal delay

observed in mice could be due to variation in GnRH neuron

activity or other crucial downstream pathways, controlling

the express ion of Hs6st1 in both the arcuate and

paraventricular nucleus (109, 110). In recent work

involving 338 patients with GnRH deficiency, including 105

subjects with a positive family history, a variant in HS6ST1

gene was identified in almost 2% of patients with CHH (111).

In this study, the inheritance model was complex, bypassing

simple Mendelian transmission, and with substantial clinical

heterogeneity suggesting a role for epigenetic mechanisms or

mutations in other candidates to fully explain the observed

phenotypes. In order to properly assign a role to HS6ST1 in

SLDP, it is crucial to take in account the biological processes

in which it takes part. Howard et al., 2018, found that reduced

Hs6st1 express ion and a consequent reduct ion of

sulfotransferase activity in kisspeptin and other neurons

can impact on their ability to regulate GnRH function and

secretion (112). In addition, Hs6st1 activity is a prerequisite

for the correct function of Anos1 and Fgfr1 (111). In

summary, a functionally minor heterozygous mutation

might cause SLDP, whereas a more severe mutation or the

simultaneous effect of a second gene (i.e., oligogenicity) could

lead to a more critical phenotype such as CHH or KS.
IGFS10

Targeted and whole exome sequencing methods identified

deleterious mutations also in IGSF10 gene. Two N-terminal

variants in IGSF10 were reported in 20 subjects with SLDP

from six families, with an AD inheritance (8). Moreover, two C-

terminal variants in the same gene were identified in 4 families of

the same study. In one family, there was incomplete penetrance,

whereas a de novomutation was proposed for another family. All

patients had a standard growth rate before puberty and a classic

DP with a delayed pubertal spurt and normal (self-reported)

sense of smell. IGFS10 gene had hitherto never been associated

with any human pathology. During embryonic development

mutations in IGFS10 impact the migration of GnRH neurons

from the vomeronasal organ to the forebrain. Patients with

mutations in this gene are characterized by isolated pubertal

delay without retardation in growth (a pattern that is also

observed in CHH). Abolition of GnRH neuronal migration

due to anomalous IGSF10 signaling might determine reduced

or deferred migration of GnRH neurons to the hypothalamus.

This result into a functional defect in the GnRH network and a

higher threshold for pubertal onset. In addition, IGSF10 loss-of-

function mutations were found in subjects with hypothalamic

amenorrhea-like phenotype, suggesting a common genetic

origin of functional central hypogonadism with both CHH

(113) and DP. Intriguingly, mutations in IGSF10 were recently
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reported in a pedigree with a Kallmann- like phenotype and in

patients with both disorders of neuronal development and

premature ovarian insufficiency (114). Studies on the role of

the HS6ST1 and IGSF10 genes in PD hypothesize that

developmental defects in the GnRH system during fetal life

may regulate the timing of onset of puberty in adolescence,

without determining other associated phenotypic characteristics.

Whether these patients will have any shortcomings in their long-

term reproductive capacity or sex life span remains to

be evaluated.
FTO
FTO is considered the most impactful locus on BMI and the

obesity risk (115). Recently, using NGS techniques, rare

heterozygous variants in FTO gene associated with BMI and

growth retardation in early childhood have been described in

SLDP families (116). Moreover, mice lacking FTO had a

significantly delayed onset of puberty (timing of vaginal

opening) (116).
EAP1

EAP1 (Enhanced at puberty 1) encodes a nuclear transcription

factor that trans-activates GnRH promoter, facilitating GnRH

secretion, and parallelly inhibits the preproenkephalin promoter,

which in turn represses GnRH secretion. Howard et al. first

described human EAP1 mutations that appear to cause SLDP in

2 families (117). Affected subjects from these two families had

canonical clinical and biochemical signs of SLDP, with delayed

onset of Tanner stage 2 and delayed peak height velocity. Both

subjects showed spontaneous pubertal development at age 18

without testosterone priming, thus excluding CHH. Two highly

conserved variants, one rare missense variant in EAP1 and one in-

frame deletion, were identified in subjects with familial delayed

puberty. Compared to wild-type EAP1, mutants showed a biased

ability to transactivate the GnRH promoter, imputable to the

diminished protein levels caused by the in-frame deletion and the

altered subcellular localization triggered by the missensemutation.

The same work showed that in monkey hypothalamus Eap1

binding to the GnRH1 promoter rise at the onset of puberty.

These recent findings suggest that genes that determine SLDPmay

play a role in the redundant mechanisms that regulate the onset of

puberty (e.g., number of cells migrating from the olfactory placode

to the hypothalamus and pre-optic areas or modulation of GnRH

function and secretion), despite genes linked to CHH that directly

control the migration or function of GnRH neurons. However,
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further studies are needed to uncover the strongness of

this intuition.
LGR4

LGR4 encodes a receptor for R-spondins which, once activated,

potentiates the canonical Wnt signaling pathway. Through GWAS

analysis LGR4 had already been designed as a regulator of pubertal

timing both in males (based on recalled age at voice breaking) and

in females (based on the age of menarche (118, 119). However,

mutations in LGR4 were not previously associated with actual

human disease. A recent study from Dunkel’s group utilizing

whole-exome sequencing of 160 individuals of 67 families in a

well-characterized DP cohort identified 3 rare missense variants in

LGR4 (120). All segregated with the DP trait with an AD pattern of

transmission. Specific expression of Lgr4 at the site of GnRH

neuron development has been reported. LGR4 mutants showed

biasedWnt/b-catenin signaling, leading to consequences on protein
expression, trafficking, and degradation. Lgr4-deficient mice

showed a significantly delayed onset of puberty and lowered

number of GnRH neurons compared to WT mice. In addition,

we were demonstrating that lgr4 knockdown in zebrafish embryos

impact development and migration of GnRH neurons. In addition,

genetic lineage tracing displayed robust Lgr4-mediated Wnt/b-
catenin signaling pathway stimulation during GnRH

neuron development.
Shared genes between CHH
and SLDP

It is well established the timing of puberty in normal

populations has a strong genetic component (107, 119, 121,

122) even though general health, nutritional status and

endocrine chemical disruptor can influence the expression of

key regulators. To date, the knowledge about the genetic

mechanisms that control HPG axis comes largely from reports

on patients with GnRH deficiency, leading to the identification

of rare variants underlying CHH. Zhu and collaborators recently

addressed the hypothesis of a shared genetic basis between CHH

and SLDP, performing WES analysis in 15 families with a CHH

proband carrying a putative pathogenic variant in CHH genes

and family members both with delayed and with normal puberty

(9). A genetic origin was identified in half of relatives with

delayed puberty and in in a small percentage (12%) of relatives

with normal puberty. Moreover, they analyzed nearly fifty DP

subjects without family history of CHH matched with controls

from ExAC and identified mutations in CHH genes in 14.3% of
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DP subjects and in 5.6% of controls. The heterozygous allelic

variants were in TAC3, TACR3, GnRHR, IL17RD and SEMA3A.

Of note, control subjects also carried potentially pathogenic

variants. Moerover, Cassatella et al., 2018 determined that the

genetic architecture of SLDP is closer to that of normal controls

than CHH probands. Exome sequencing showed potentially

pathogenic variant in CHH genes (twenty-five genes with

IGSF10) in 51% of CHH patients, in 7% of SLDP probands

and in 18% of healthy subjects. Oligogenic inheritance was

found in 15% of CHH patients and in only 1.4% of SLDP

subjects and 2% of controls. To note, potentially pathogenic

variants in SLDP patients were found in AXL, FGFR1, HST6ST1,

PROKR2, FEZF1 and TAC3 genes.
Genetic evaluation supports
differential diagnosis in patients with
SLDP and CHH

As DP is a common condition in unaffected individuals,

identifying a genetic cause in SLDP presents several pitfalls.

Thus, a genetic variant likely to lead to this condition could have

a quite high prevalence in the normal population. Furthermore,

both the manifestation of pubertal delay in 10% of relatives of

patients with CHH (9) and the likelihood of a spontaneous

reversal in 10% of patients with CHH (123) remains consistent

with a shared molecular basis of CHH and SLDP. Nevertheless,

it remains true that genetic variants reported are distinct

between the two diseases (32). This supports the hypothesis

that NGS of a large panel of candidate genes might one day assist

physicians to distinguish those adolescents with severe CHH

from those with SLDP, enabling timely and correct treatment to

CHH patients. Howard and collaborators studied the burden of

genetic variants in an ethnically mixed cohort of adolescent

patients with DP, with the purpose of validate the genetic

analysis of known causative genes to confirm the diagnosis of

CHH or SLDP. The results of this work show a fair correlation

between patient genotype and clinical diagnosis, with a

specificity of 100% and PPV of genetic tests for the diagnosis

of patients with CHH. The authors also reported that subjects

carrying homozygous or loss-of-function mutatons in CHH

genes would probably have a final diagnosis of CHH. In

contrast, patients presenting mutations reported only in SLDP

with heterozygous inheritance were thought to be likely to have a

final diagnosis of SLDP. These results confirm that WES testing

can make a clear diagnosis of CHH for 17.4% of patients

presenting with pubertal delay. This finding supports the

implementation of genetic analysis in the clinical practice, in

combination with clinical and biochemical observations, to

validate the diagnosis of CHH in adolescents presenting with
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DP. It is worth mentioning that the same work identified in three

patients with a clinical diagnosis of SLDP also pathogenic

variants in other genes previously linked to CHH, namely

DMXL2, OTUD4 and SEMA3.
Conclusions

Pubertal delay can be the presentation of a wide spectrum of

clinical phenotypes ranging from CHH, which is a pathological

condition and needs appropriate medical therapy, to SLDP, a

possible para-physiological and benign condition mostly

compatible with normal reproductive capacity post- puberty,

to non-gonadal illness or energy deficit. Distinguishing between

SLDP and CHH remains challenging and, thus far there is no

clear and univocal evidence to assist clinicians in their

differential diagnosis and management of SLDP and CHH.

The availability of an accurate genetic test in clinical practice

to discriminate between the two conditions has the potential for

significant cost savings (preventing unnecessary investigations)

and improvement of health and fertility outcomes for

CHH patients.

Recently, the application of NGS technologies has shed light

on the complex genetic mechanisms at the basis of CHH or

SLDP, identifying new candidate genes and suggesting a

different genetic backbone for these two conditions. This

difference constitutes the main assumption on which to model

a genetic tool that allows an early differential diagnosis between

the two conditions. However, it should consider that so far only

a few causal genes have been described in SLDP, leading to a

lower pick-up rate for SLDP pathogenic variants in a putative

diagnostic panel when compared with CHH mutations.

Furthermore, variants contextualization in patients with

oligogenic inheritance is difficult due to our lack of knowledge

of variant–variant crosstalk. For these reasons, we suggest that so

far only an integrated approach can increase the sensitivity and

specificity in CHH diagnosis. Thus, we invite the readers to

combine this type of genetic analysis with biochemical profiling

(e.g., basal LH, FSH, inhibin B, AMH) and an accurate physical

and anamnestic data collection to maximize the diagnostic

accuracy. Nevertheless, in the future, as the knowledge of the

genetic architecture of delayed puberty will be dramatically

improved, genetic testing might offer a quick and precocious

analytical tool also in clinical routine.
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